292 research outputs found

    Resonance trapping, stochastic diffusion and incoherent emittance growth induced by structured electron-cloud pinch

    Get PDF
    When a bunch passes through an electron cloud, the transverse electron density distribution is enhanced and modulated in time as a consequence of the motion of individual electrons under the action of the nonlinear beam field. The effect of this “structured” electron pinch together with the synchrotron motion of beam particles leads to an incoherent emittance growth via the excitation and repeated crossing of resonances, that can give rise to either stochastic “scattering” (“diffusion”) or trapping. We study these effects via a toy model of an idealized pinch, and present applications to the CERN SPS and the GSI SIS100

    Electron-Cloud Intrabunch Density Modulation

    Get PDF
    During the passage of a proton bunch through an electron cloud, a complicated electron density modulation arises, with characteristic ring or stripe patterns that move radially outward along the bunch. We present simulation results for field-free and dipole regions, which reveal the morphology and main features of this phenomenon, explain the physical origin of the stripes in either case, and discuss the dependence on key parameters

    Generating optimized Fourier interpolation routines for density function theory using SPIRAL

    Get PDF
    © 2015 IEEE.Upsampling of a multi-dimensional data-set is an operation with wide application in image processing and quantum mechanical calculations using density functional theory. For small up sampling factors as seen in the quantum chemistry code ONETEP, a time-shift based implementation that shifts samples by a fraction of the original grid spacing to fill in the intermediate values using a frequency domain Fourier property can be a good choice. Readily available highly optimized multidimensional FFT implementations are leveraged at the expense of extra passes through the entire working set. In this paper we present an optimized variant of the time-shift based up sampling. Since ONETEP handles threading, we address the memory hierarchy and SIMD vectorization, and focus on problem dimensions relevant for ONETEP. We present a formalization of this operation within the SPIRAL framework and demonstrate auto-generated and auto-tuned interpolation libraries. We compare the performance of our generated code against the previous best implementations using highly optimized FFT libraries (FFTW and MKL). We demonstrate speed-ups in isolation averaging 3x and within ONETEP of up to 15%

    Time evolution in a geometric model of a particle

    Get PDF

    Measurement of transverse beam emittance of split beams for the CERN Proton Synchrotron Multi-Turn Extraction

    Full text link
    Crossing a horizontal nonlinear resonance is the approach that can be used to split a beam in several beamlets with the goal to perform multi-turn extraction from a circular particle accelerator. Such an approach has been successfully implemented in the CERN Proton Synchrotron and is used routinely for the production of high-intensity proton beams for fixed-target physics at the Super Proton Synchrotron. Recently, thanks to the deployment of diamond detectors, originally installed to monitor the beam losses at extraction, it has been possible to measure the horizontal beam emittance of the split beam just prior to extraction. This is the first time that an emittance measurement is attempted for split beams, i.e. in a regime of highly nonlinear beam dynamics. In this paper, the technique is presented and its application to the analysis of the experimental data is presented and discussed in detail. This result is essential for the performance assessment of the splitting process and for the design of further performance improvements

    Developing approaches to control SARS-CoV-2 in a public hospital

    Get PDF
    The Territorial Public Health Care Company (in Italian, ASST) of the Saints Paolo e Carlo of Milano includes two large public hospitals, and several outpatients and territorial healthcare services. It employs 5642 workers. The outbreak of novel coronavirus disease 2019 (COVID-19) reached our ASST in the last week of February when a doctor in the Intensive Care Unit of the San Paolo Hospital was diagnosed with COVID-19. Our Occupational Health Unit immediately introduced measures to control the epidemic. Our approach was based on contact tracing and isolation of asymptomatic infected workers. A \u2018close contact\u2019 was defined as a person who had face-to-face contact or spent at least 15 min in an indoor environment with a positive subject (patient, colleague or relative) without any protective equipment (surgical mask). From 27 February to 23 April we tested 2907 workers (51% of the total workforce) with nasopharyngeal swabs (NPS) using rtPCR for SARS-CoV-2 detection [1,2], with positive results in 152 hospital and 33 territorial workers (3% of the total workforce). All the infected workers were asked to fill in a daily electronic data collection form for the duration of the infection. About 50% remained substantially asymptomatic for the quarantine period, which ended when the workers underwent two NPS on two consecutive days with a negative result. The time to recovery took from 12\u201347 days, with a median duration of about 30 days, which is longer than normally expected. Symptomatic workers showed only very mild symptoms; mainly loss/change of smell and taste. Four were hospitalized but none had severe or life-threatening infection. The data suggest that the \u2018active search approach\u2019 is more effective in closed communities such as groups of healthcare workers than generalized testing. We have started a retrospective survey of 100 positive workers studying symptoms, source of exposure and co-morbidities using a modified version of the \u2018WHO novel coronavirus acute respiratory infection clinical characterization data tool\u2019, administered by telephone interview. Finally, in order to prepare for future outbreaks, we are testing a novel telemedicine approach enabling us to follow quarantined workers with a digital platform with a mobile phone app that provides remote video examinations and online symptoms and health parameter checking (body temperature, oxygen saturation, etc.). The platform facilitates rapid intervention. Using this approach, we can follow a large cohort of workers with continuous monitoring. The tool may also be able to reduce the rate of patients\u2019 hospitalization. We are also comparing those with positive and negative swabs using a rapid immunochromatographic assay for the detection of IgG and IgM antibodies to SARS-CoV-2 virus in whole blood to assess potential immunity. Preliminary results are promising for IgG, even though the protective capacity of this immunoglobulin is still unknown

    Frequency map analysis of resonances in a nonlinear lattice with space charge

    Get PDF
    Abstract In storage rings for heavy ion fusion beam losses must be minimized. During bunch compression high space charge is reached and the reciprocal effects between the collective modes of the beam and the single particle lattice nonlinearities must be considered to understand the problem of resonance crossing and halo formation. We show that the frequency map analysis of particle in core models gives an adequate description of the resonance network and of the chaotic regions where the halo particles can diffuse
    corecore